

Cambridge International AS & A Level

CHEMISTRY 9701/22
Paper 2 AS Level Structured Questions May/June 2022

MARK SCHEME
Maximum Mark: 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

This document consists of 14 printed pages.

© UCLES 2022 [Turn over

Cambridge International AS & A Level – Mark Scheme PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

© UCLES 2022 Page 2 of 14

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Science-Specific Marking Principles

- 1 Examiners should consider the context and scientific use of any keywords when awarding marks. Although keywords may be present, marks should not be awarded if the keywords are used incorrectly.
- 2 The examiner should not choose between contradictory statements given in the same question part, and credit should not be awarded for any correct statement that is contradicted within the same question part. Wrong science that is irrelevant to the question should be ignored.
- Although spellings do not have to be correct, spellings of syllabus terms must allow for clear and unambiguous separation from other syllabus terms with which they may be confused (e.g. ethane / ethene, glucagon / glycogen, refraction / reflection).
- The error carried forward (ecf) principle should be applied, where appropriate. If an incorrect answer is subsequently used in a scientifically correct way, the candidate should be awarded these subsequent marking points. Further guidance will be included in the mark scheme where necessary and any exceptions to this general principle will be noted.

5 <u>'List rule' guidance</u>

For questions that require *n* responses (e.g. State **two** reasons ...):

- The response should be read as continuous prose, even when numbered answer spaces are provided.
- Any response marked *ignore* in the mark scheme should not count towards *n*.
- Incorrect responses should not be awarded credit but will still count towards n.
- Read the entire response to check for any responses that contradict those that would otherwise be credited. Credit should **not** be awarded for any responses that are contradicted within the rest of the response. Where two responses contradict one another, this should be treated as a single incorrect response.
- Non-contradictory responses after the first *n* responses may be ignored even if they include incorrect science.

© UCLES 2022 Page 3 of 14

May/June 2022

6 Calculation specific guidance

Correct answers to calculations should be given full credit even if there is no working or incorrect working, **unless** the question states 'show your working'.

For questions in which the number of significant figures required is not stated, credit should be awarded for correct answers when rounded by the examiner to the number of significant figures given in the mark scheme. This may not apply to measured values.

For answers given in standard form (e.g. $a \times 10^n$) in which the convention of restricting the value of the coefficient (a) to a value between 1 and 10 is not followed, credit may still be awarded if the answer can be converted to the answer given in the mark scheme.

Unless a separate mark is given for a unit, a missing or incorrect unit will normally mean that the final calculation mark is not awarded. Exceptions to this general principle will be noted in the mark scheme.

7 Guidance for chemical equations

Multiples / fractions of coefficients used in chemical equations are acceptable unless stated otherwise in the mark scheme.

State symbols given in an equation should be ignored unless asked for in the question or stated otherwise in the mark scheme.

© UCLES 2022 Page 4 of 14

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question			Answer	Marks
1(a)	many strong metallic OR many strong (electros OR strong bonds in giant M2 comment explaining	static) attractions between of metallic structure.	ations and delocalised electrons Mg in terms of movement of delocalised electrons	2
1(b)(i)	species	magnesium in Mg ₃ N ₂	nitrogen in Mg₃N₂	1
	oxidation number	2(+)/(+)II	3-/-III	
1(b)(ii)	_	ns / Mg increases ox no / M s / N reduces ox no / N is re		1
1(b)(iii)		/ energy change) when one in their standard states	e mole of a compound / substance is formed	2
1(b)(iv)	3.645 ÷ 24.3 mol Mg p M2 use M1 in correct 23.05 ÷ M1 OR 23.05 OR 23 050 ÷ M1 OR 2	expression to find energy is + mol Mg ₃ N ₂	g_3N_2 OR 0.05 mol of Mg_3N_2 released by 1 mol Mg_3N_2	3

© UCLES 2022 Page 5 of 14

9701/22

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

May/June 2022

Question	Answer	Marks
2(a)	giant ionic	1
2(b)	Ra ²⁺ and 2 x C <i>l</i> ⁻ 0 electrons surrounding 2Ra AND 8 electrons surrounding C <i>l</i>	1
2(c)(i)	$Ra + 2H_2O \rightarrow Ra(OH)_2 + H_2$	1
2(c)(ii)	Ra – more bubbles per unit time OR With Ra solid disappears more quickly OR Ra is the first to stop fizzing ora	1

© UCLES 2022 Page 6 of 14 9701/22

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

May/June 2022

Question	Answer	Marks
2(c)(iii)	option 1 suggest why these reactions occur at different rates (collision theory)	2
	M1 difference in activation energy / ionisation energy	
	M2 affects the frequency of effective collisions (between particles / molecules) OR	
	affects the proportion of particles with energy greater than activation energy	
	option 2 suggest why the elements have different reactivity in terms of atomic structure (which results in a different rate)	
	M1 ionisation energies are different	
	M2 a decrease in nuclear attraction due to EITHER	
	increase in shielding OR	
	increase in distance of outer electron from nucleus OR	
	increase in number of shells of electrons ora	
2(c)(iv)	 M1 pH value (or values) for each solution must be greater > 7 AND 	2
	 pH value (or range values) identified for solution made from Ra must be greater than pH values (or range of values) stated for Ca 	
	M2 any one from:	
	 solubility of group 2 hydroxides increases down the group Ra(OH)₂ is more soluble 	
	 greater concentration of OH⁻(aq) in the solution involving Ra more OH⁻ (aq) in the solution involving Ra 	

© UCLES 2022 Page 7 of 14

Cambridge International AS & A Level – Mark Scheme **PUBLISHED** 9701/22

May/June 20	022
-------------	-----

Question				Answer		Marks
2(d)	step	method	observation with CaC <i>l</i> ₂	observation with CaBr ₂	observation with CaI ₂	3
	step 1	AgNO ₃ (aq) (+HNO ₃ (aq)	white ppt	cream OR off-white ppt	(pale) yellow ppt	
	step 2	NH₃ (aq)	(ppt) dissolves / (completely) soluble (in dilute or conc) OR (forms) colourless solution	(ppt) partly soluble / slightly soluble (in dilute or conc) ALLOW (ppt) dissolves in excess (in dilute or conc) ALLOW (ppt) soluble in conc. NH ₃	(ppt) insoluble / solid remains (in dilute or concentrated)	
	M2 ALL s	olid / precipitate	ilver nitrate solution AND ste AND correct colours descri on addition of ammonia	p 2 NH₃(aq) / ammonia solution / dilute bed in row 1	NH ₃ / concentrated NH ₃	

© UCLES 2022 Page 8 of 14

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
3(a)(i)	M1 rate(s) of forward and reverse / backward reactions are equal / are the same M2 no change in measurable properties OR concentration of reactants and products remain constant	2
3(a)(ii)	(colourless gas) becomes purple (gas)	1
3(a)(iii)	$K_p = \frac{(pH^2)(pI^2)}{(pHI)^2}$	1
3(a)(iv)	M1 use correct expression for finding amount of HI used up in reaction $86.4 = 100 \times (0.025 - x) / 0.025 - x + x / 2 + x / 2)$ where $x = HI$ mol used up OR $86.4 = 100 \times (0.025 - 2x) / (0.025 - 2x + x + x)$ where $2x = HI$ mol used up M2 correct calculation to find amount of HI(mol) at equilibrium based on HI(mol) at eq'm = $0.025 - HI(mol)$ used = $0.025 - 0.0034 = 0.0216$ OR 0.022 (mol) alternative method M1 use the pp H_2 and pp I_2 at equilibrium (= 13.6) to calculate no mol H_2 & I_2 at equilibrium (either 0.0034 in total OR 0.0017 each) M2 use value for no mol $H_2 + I_2$ in expression to find no mol HI $0.025 - (no \text{ mol } H_2 + I_2) = 0.0216$	2
3(b)	 evaluation, to give a value, based on calculation using: all three correct bond energies [HI = 299, H₂ = 436, I₂ = 151] correct use of stoichiometry to calculate ΔH for 1 mol HI x = 1 and y = ½ calculate a value for ΔH correctly i.e. x(299) – y(436 + 151) ΔH = (+)5.5 kJ mol⁻¹ 	2
3(c)	none / no change	1
3(d)(i)	acid-base	1

Question	Answer	Marks
3(d)(ii)	$8HI + H_2SO_4 \rightarrow 4I_2 + H_2S + 4H_2O$ OR $8H^+ + 8I^- + H_2SO_4 \rightarrow 4I_2 + H_2S + 4H_2O$	1
3(d)(iii)	explanation in terms of comparison of reducing nature of HI to HCl i.e. HI/I^- is stronger reducing agent compared to Cl^-/HCl OR explanation in terms of additional behaviour of HI (compared to HCl) i.e. HI/I^- reduces S (in sulfuric acid)/(concentrated) sulfuric acid	1

Question		Answer	Marks
4(a)(i)	$CH_{3}(CH_{2})_{2}CH_{2}Br$ $CH_{3} - CH_{3} -$	CH ₃ CH ₂ CH(Br)CH ₃ OR C ₂ H ₅ OR name: 2-bromobutane	2
	M1 structure of isomer 1 AND nameM2 structure of isomer 2 AND name (in an)	y order)	
4(a)(ii)	positional		1
4(b)(i)	F——C——H Br		1

Question	Answer	Marks
4(b)(ii)	$CF_3CBrClH \rightarrow CF_3CHCl(\bullet) + Br(\bullet)$	1
4(b)(iii)		1
4(c)(i)	C	1
4(c)(ii)	non-biodegradable OR poisonous / harmful HC l made when burnt	1

Question		A	nswer	Marks
5(a)	reaction	reagent and conditions	type of reaction	6
	1	NaOH(aq) [M1]	substitution	
	2	NH ₃ [M2] in ethanol AND heat under pressure [M3]	substitution	
	3	NaOH in ethanol AND heat [M4]	elimination	
		types of reaction pes = 2 marks and 2 correct types = 1 mark]		

© UCLES 2022 Page 11 of 14

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
5(b)	M1 C-I (covalent bond) is weaker ora	2
	M2 lower activation energy / lower E_a (with 2-iodopropane)	
	OR	
	M2 explain in terms of the SN₁ mechanism (that is dominant/preferred/occurring with 2-iodopropane is fast(er)) (identical) carbocation is made (more) quickly (with 2-iodopropane) OR	
	low / less energy is required to make the (same)carbocation / intermediate (from 2-iodopropane)	
	OR	
	M2 iodine / I (of C–I) has weaker attraction of nucleus to bonding / shared pair (of electrons) due to any one of:	
	 more / high shielding (of electrons from inner shells) more / 5 electron shells in iodine 	
	C-I greater distance from nuclei (to bonding pair of electrons)	
5(c)(i)		2
	M1 dipole C^{δ_+} –Br $^{\delta}$ AND curly arrow from C–Br bond to Br $^{\delta}$	
	M2 lone pair on C of ⁻CN AND curly arrow from lone pair to C (on C-1 of bromopropane)	

© UCLES 2022 Page 12 of 14 9701/22

Cambridge International AS & A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks
5(c)(ii)	$CN(CH_2)_2CH_3 + 2H_2O + HCl \rightarrow HOOC(CH_2)_2CH_3 + NH_4Cl$	1
	OR	
	$^{\text{N}} + 2H_2O + HCl \rightarrow ^{\text{HO}} + NH_4Cl$	
5(c)(iii)	$HOOC(CH_2)_2CH_3 + 4[H] \rightarrow HO(CH_2)_3CH_3 + H_2O$	1
	OR	
	HO $+$ HO $+$ HO $+$ HO	
5(c)(iv)	LiA <i>l</i> H ₄ OR lithium tetrahydridoaluminate (in ether)	1

Question	Answer		
6(a)	Br ₂ (aq) orange to colourless OR orange disappears	2	
	Na ₂ CO ₃ (s)	fizzing OR bubbles OR effervescence	
6(b)	41.38 / 12 3.4	H : O 45 / 1 55.17 / 16 .45 3.45 (so C ₍₁₎ H ₍₁₎ O ₍₁₎)	1
6(c)(i)	Look for some reference to 116 as the mass of the molecular ion AND mass of $C_{(1)}H_{(1)}O_{(1)}$ = 29 to conclude molecular formula is $C_4H_4O_4$ 116 / 29 = 4 so $C_4H_4O_4$		1
6(c)(ii)	M1 m/e 45: †C M2 m/e 71: C ₃	OOH OR ⁺ CHO ₂ H ₃ O ₂ ⁺	2

Question	Answer	Marks
6(c)(iii)	OH OR OH HOO	1

© UCLES 2022 Page 14 of 14